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We investigate self-diffusion in a classical fluid composed of two species which 
are distinguished through the color of their particles, either black or white, but 
are identical as regards their mechanical properties. Disregarding color the fluid 
is in thermal equilibrium. We show that if a single "test particle" in the 
one-component fluid moves asymptotically as Brownian motion, then the color 
density and current in certain classes of nonequilibrium states are related, on the 
appropriate macroscopic scale, through Fick's law, and the former is governed 
by the diffusion equation. If in addition several test particles move asymptoti- 
cally as independent Brownian motions, then the colored fluid is, on a macro- 
scopic scale, in local equilibrium with parameters governed by the solution of 
the diffusion equation. 

KEY WORDS: Diffusive motion; test particles; classical fluid; conver- 
gence to Brownian motion; steady state self-diffusion; Fick's law. 

1. INTRODUCTION 

The mathematical formalism of statistical mechanics, relating macroscopic 
behavior to microscopic dynamics, is not entirely satisfactory for systems 
out of equilibrium. This is true even close to equilibrium, when the 
behavior of the macroscopic variables is governed by well-established 
hydrodynamic equations. One of the conceptual problems encountered is 
that of defining in a precise way the continuum variables which enter into 
the macroscopic transport laws. Consider, for example, Fourier's law of 
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heat conduction, 

j (q,  t) = - K(p, r)grad r(q,  t) (1.1) 

wherej(q, t) is the energy flux at position q and time t, T(q, t) is the "local 
temperature" at the same position and time, and x is the thermal conductiv- 
ity which is supposed to depend only on the local density and temperature. 
It is clear, since the gradient enters the law explicitly, that there is no way in 
which we can go to a scaleless thermodynamic limit as we do in equilib- 
rium. What is not clear at all a priori, when starting with a microscopic 
model, is just on what scale (1.1) is supposed to be valid. 

This problem appears also in the derivation of the Einstein-Green- 
Kubo formulas for the transport coefficients. Indeed while we believe that 
these are valid in many (perhaps all) cases we do not feel that any of the 
derivations available at present are entirely satisfactory. In particular none 
of the derivations seems applicable to the computation of transport proper- 
ties in steady state experiments where the fluxes are driven by external, 
time-independent, (infinite) thermal reservoirs coupled to the system. We 
thus cannot show, even on a formal level, that the transport coefficients in 
the steady state equal those computed microscopically from the relaxation 
of local deviations from equilibrium. (l'2) 

The main purpose of this paper and of two subsequent papers (3'4) is to 
investigate self-diffusion in a classical fluid of particles: conceptually and 
mathematically the simplest nonequilibrium phenomenon. We shall give 
sufficient criteria for the validity of the diffusion equation and the equality 
of the self-diffusion constant in time-dependent and steady state situations. 
It will turn out that the latter imposes stronger, albeit physically very 
reasonable, requirements on the large spatial and time scale motion of a 
test particle in an equilibrium fluid: not only need the probability distribu- 
tion of the displacements at any one time be asymptotically Gaussian, they 
also have to be (on the appropriate scale) independent. 

We shall not discuss in this paper the question of whether a system of 
particles interacting via some specified reasonable pair potential, e.g., 
Lennard-Jones or hard core, actually satisfies these hypothesis at any 
given density and temperature. This is an extremely difficult mathematical 
problem whose solution is nowhere in sight. The best we can do at present 
is to treat some very idealized systems. Two such cases, the low-density gas 
(Boltzmann-Grad limit) and the one-dimensional system of hard rods, are 
investigated in subsequent papers. (3'4) 

The outline of the paper is as follows. In Section 2 we explain the 
problem somewhat more precisely and in Section 3 we define the micro- 
scopic model. In Sections 4 and 6 we discuss time-dependent and steady 
state color density and in Section 5 the relationship between current and 
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density gradient (Fick's law) is investigated. Finally, in Section 7 we discuss 
fluctuations and the local equilibrium structure and we draw some conclu- 
sions at the end. 

2. FORMULATION OF THE PROBLEM 

Self-diffusion, being inherently quasiequilibrium and linear, is one of 
the simplest transport phenomenon. Microscopically it is measurable 
through the incoherent part of the neutron scattering cross section (5) and 
can also be studied readily in computer simulations. (6'7) Macroscopically it 
is best approache& in principle at least, by considering a binary mixture of 
fluids which are mechanically identical but differ according to some 
quality, say, color. (All our considerations are classical; in quantum me- 
chanics the problem is more complicated.) We can then consider situations 
in which for a fluid in equilibrium at density p, the color density on(q, t) is 
a hydrodynamic variable which varies on a macroscopic spatial and time 
scale. The object of our study is the microscopic basis of the laws governing 
the behavior of n (q, t) under various (realizable or imaginary) experimental 
conditions. 

Let us consider two such situations: 
(1) We start at time t = 0 with an equilibrium system in which there is 

some non-uniform color density pn(q, 0). For example, the color is all black 
to the left of a plane passing through the origin perpendicular to the x axis 
and all white to the right of that plane. We shall write this as 

1, qx < 0 
n(q,O) = O, q~>O (2.1) 

The phenomenological law governing the evolution of n is 

3 2 
-~tn(q,t)= D-~qz n(q,t ) (2.2) 

where the self-diffusion constant D depends only on the equilibrium 
density and temperature and is thus independent of q and t. 

(2) In an (infinite) equilibrium system we single out a slab of width L 
perpendicular to the x axis for the sole purpose of imposing boundary 
conditions on the colors. All particles to the left of the slab are black and 
all particles to the right of the slab are white. If a particle inside the slab 
exits to the left, then its color is changed to (or remains) black and if it exits 
to the right, then its color is changed to (or remains) white. Aside from this 
change of colors the system is in equilibrium. (6'v) These boundary condi- 
tions ensure that a constant current of black particles enters the slab from 
the left and that a constant current of white particles enters the slab from 
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the right. Under these boundary conditions a steady state should be 
reached in which the color profile pn,.(q) and currentj~(q) have the form 

1 q x < 0  
n~(q)= ( r - q x ) / L ,  O<qx<~L (2.3) 

0 q x > L  

Dspex/ L, 0 < q ~ < L  
J~(q) = O, qx < O, qx > L (2.4) 

e x is the unit vector pointing in the positive x direction. 
The problem then is to give a microscopic derivation, under suitable 

assumptions, of Eqs. (2.2)-(2.4) and ipso facto to show that D~ = D. Now 
from the macroscopic point of view, the behavior in both cases is a 
consequence of Fick's law for the current, 

j (q, t) = - D grad pn (q, t) (2.5) 

When (2.5) is combined with the equation of continuity for the color 
density, 

~t on (q' t) + div j(q,  t) -- 0 (2.6) 

we obtain (2.2). The relation (2.5) being "local" it also implies that n~(q) is 
given by the stationary solution of (2.2) with appropriate boundary condi- 
tions. The central problem is therefore the derivation of (2.5) as a relation 
between microscopically defined independent quantities when these are 
appropriately scaled. The continuity equation follows from microscopic 
color conservation. 

The simplest microscopic interpretation of #n(q,t) is as the average 
single-particle density, #l(q, t), of black particles in an ensemble which is in 
equilibrium with respect to the uncolored particles, i.e., when looked at with 
"color blind" glasses. Clearly, however, if no further restrictions are im- 
posed on the state at the initial time, then there is no hope that Pl(q, t) will, 
even approximately, be governed by the diffusion equation (2.2) for any 
fixed finite time t. (Examples of "bad" initial states can be obtained 
through velocity reversal.) Physically one expects that if initially color and 
mechanical degrees of freedom are "sufficiently uncorrelated," then 91(q, t) 
satisfies (2.2), at least approximately, We shall therefore consider situations 
in which the microscopic state corresponding to the color density (2.1) (and 
similar cases) corresponds to the color distribution of a particle depending 
only on its location. We then have (5) 

= faq' V~(q, t l q', o)o,(q' ,  o) (2.7) pl(q, t) 

where P~(q, t[q', 0) is the van Hove self-function which gives the probabil- 
ity density for finding a specified particle (test particle) at position q at time 
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t given that it was at position q' and had Maxwellian velocity distribution 
at time zero, P,(q, 01 q', O) = ~(q - q'). Since the system is in equilibrium, 
Ps (q, t I q', 0) = Ps (q, t + s I q', s), and if the system is also translation invari- 
ant, then P,(q, t [ q', O) = Pfiq - q', t 10, 0). A little thought shows that even 
here it is only for large q and t, related by the scale invariance of the 
diffusion equation, i.e., time ---e -2 and space ~ c - 1 ,  c << 1, where one can 
expect (or hope) that Pfiq, tlO, O ) will behave like the solution of the 
diffusion equation and thus we should identify n(q, t) of (2.2) as 

on(q, t) = lim 01(e- 'q, ~-2t) (2.8) 
c---)0 

Also in the steady state experiment (2) the density and current of (2.3) and 
(2.4) should be identified as 

on~(q) = lim 0,(e-]q;  e -1L) (2.9) 
c--+0 

j , (q) = lime - ) (E-lq; e - ' L )  (2.10) 
e--->0 

where Pl(q; L) is the microscopic steady state average density a n d j ( q ;  L) 
the microscopic steady state average current of black particles at q for a 
slab of width L. 

Our first task is then to investigate the conditions on the systems which 
ensure that (2.5) holds for the scaled average color density in situations of 
the type considered here. We would like to do more, however. In analogy 
with equilibrium one expects physically that not only averages but also 
typical configurations of macroscopic systems will obey the macroscopic 
laws. Therefore eventually one should derive the following more refined 
description: At time t in a macroscopically small region around the point q 
such that the color density on(q, t) can be considered as almost constant, 
the fraction n(q,t) of particles is black and the fraction 1 -  n(q,t) of 
particles is white. If this is the case, then the actual density of black 
particles is governed by the diffusion equation. In addition, the fluid, 
considered on a macroscopic scale, is locally in thermodynamic equilib- 
rium. The parameters determining this local equilibrium state are color 
density, particle density, and temperature. The latter two are fixed while the 
former changes on a macroscopic scale and its local value is governed by 
the solution of the diffusion equation (2.2). 

3. M I C R O S C O P I C  M O D E L  

We consider an infinitely extended system of classical particles car- 
rying color. The phase space of the system f~, is the space of configurations, 
i.e., the space of sequences (q j ,p j ,~] j  E N}  modulo permutations such 
that qj. ~ R 3, pj E R 3, ~ @ {0, 1 }. q/refers to the position, pj to the velocity, 
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and oj to the color of thej th  particle, oj = 0 corresponds to white and oj = 1 
corresponds to black. Let ~2p be the space of uncolored particle configura- 
tions, i.e., the space of sequences { qj, pj IJ ~ N)  modulo permutations. We 
will use the shorthand xj = (qj, pj) and x = (xj IJ ~ N}. 

The particles interact through a central pair potential which we assume 
to satisfy conditions ensuring that the equilibrium dynamics exists in the 
thermodynamic limit and is unique. (8-1~ As long as no color-changing 
conditions are imposed color simply sticks to a particle. The particles are in 
thermal equilibrium at density p and inverse temperature ft. We assume 
that the system exists in a single phase with decaying correlations. Let ~ be 
the unique equilibrium state on ~p at these parameters. Peq denotes the 
vector of correlation functions of /~ and h e the Maxwellian at inverse 
temperature ft. 

We consider now the motion of one or several test particles in the 
colorless system of particles. These test particles are mechanically identical 
to all other particles. Let us describe first the motion of a single test 
particle. The phase space of the joint system, test particle plus fluid 
particles, is 

R 6 is the phase space of the test particle. Let/.t(- [q, p) be the Gibbs state 
conditioned that there is a particle at q with velocity p. Then the (un- 
normalized) measure 

t~l t~(dxlq, p)dqh~(p)dp (3.1) 

on f~l is formally time invariant. Exploiting this fact one can use the same 
argument which proves the existence of equilibrium dynamics to establish 
that for/z~--almost all initial conditions the dynamics 

T, : ( q, p ,x}  ~ {q(t), p( t ) , x ( t )  ) (3.2) 

exists and is unique. (q(t), p(t), x(t)) are the solution of Newton's equation 
of motion with initial conditions (q, p,x).  The equilibrium probability 
distribution in the system's coordinates and velocities induces a probability 
distribution on the trajectories of the test particle, e.g., the position q(t) of 
the test particle at time t is a random variable on (R 6 x ~p, ]s Since 
t ~  q(t) is continuous, q(t) is a stochastic process with continuous sample 
paths. Let C(R) be the space of continuous functions on R with values in 
R 3. C(R) restricted to bounded intervals is equipped with the sup-norm, as 
usual. Then x---> q( t ,q ,p ,x)  induces dqdp--almost surely a probability 
measure on C(R), the path measure of the stochastic process q(t) starting 
at q with velocity p. By a similar argument, one establishes the existence of 
the stochastic process of the motion of n test particles. 
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We use the following notation: q~(t) . . . .  , qn(t) are the positions 
of n test particles at time t considered as a stochastic process, t o  
( q l ( t ) , . . . ,  qn(t)) is continuous and P(. l ql, Pl . . . . .  qn, P,) denotes the 
path measure on C(R, R 3n) for this process conditioned the test particles 
start at ql . . . .  , qn with velocities gl . . . . .  p,.  E( .  I ql, Pl . . . . .  qn, P,) de- 
notes expectation with respect to this measure. 

4. TIME-DEPENDENT STATES 

It follows from the general results of equilibrium statistical mechanics 
that if one starts the test particle at q(O) with a Maxwellian velocity 
distribution, then the velocity process ( p ( t ) l - ~  < t < ~ )  is stationary 
and has mean zero. Because of collisions one expects that the velocitiesg(t) 
at widely spaced time intervals are weakly correlated and that therefore 

q(t) = q(O) + footdS p(s)  (4.1) 

satisfies a central limit theorem when scaled in an appropriate way, i.e., the 
distribution wt,c(dq) of the random variable 

qC(t) = eq(O) + E fo*-2tds p(s)  -- Eq(r (4.2) 

containing t as a parameter should tend to a Gaussian as r o 0. We shall 
call this Assumption A: 

wt,~(dq) o (4~rDot)-3/2exp[ - (q - qo)2/2Do t ] dq (4.3) 

Assumption A is sufficient to deal with initial states where the color of 
a particle depends only on its position. Let g(q), 0 < g(q)~< 1, be a 
continuous function of q and let 

g(q, 1) = g(q) (4.4) 
g( q, O) = 1 - g( q) 

Given a configuration of particles, we assume that the particle at qj has 
color ~ with probability g(qj, oj) independently of all the other particles, g 
is then the profile of the black particles. The correlation functions of this 
initial state are given by 

p, (x , ,o  1 . . . . .  x , ,%,0 ;  g) = peq(Xl . . . . .  x,) f l  g(qj, oj) (4.5) 
j ~ l  

The correlation functions of the time evolved state at time t are denoted by 

p.(x l ,o  I . . . . .  x . ,a . , t ;  g) 
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We consider a slowly varying color profile by setting 

gO(q) = g(cq) (4.6) 

c << 1, and follow the evolution of colors over times of the order e-2 by 
means of the scaled correlation functions 

o ; ( x , , o , ,  . . . , x , , o , , t ;  g )  = o , ( , - ' q , ,  p , , o , ,  . . . , ,-lq,, e,,~,,,-2t; g') 
(4.7) 

The average number of black particles in the volume A at time t equals 
the average number of particles in A times the probability that the particle 
at q in A at time t is black, which is the same as the probability that it was 
black at time zero. It follows then that the nth correlation function is given 
by the motion of n test particles as 

O~(Xl ' (~1 . . . . .  In,  On, t ;  g )  = Oeq ,n ( s  - - l q l  , P l ,  " �9 " , s - - l q n ,  Pn) 

x e ~ g ( q ; ( 0 ,  oj) I ql, - f ,  . . . . .  qo, - p .  
~ j = l  

(4.8) 

To obtain (4.8) we used the time invariance and time-reversal invariance of 
the equilibrium measure. 

By Assumption A the average color profile tends to 

lim p~(Xl, o'1, t; g) = h~ (Pl)Pg(ql, ol, t) (4.9) 
e---~0 

where g(q, o, t) = og(q, t) + (1 - o)(1 - g(q, t)) and where g(q, t) is the so- 
lution of the diffusion equation (2.2) with initial conditions g(q, O) = g(q) 
and diffusion constant D o . 

Generally, D o is identified with the diffusion coefficient D defined by 
the asymptotic mean square displacement 

D =t~oolim 1 fdpht~(p)E(q2(t) lO,  p) (4.10) 

If the velocity autocorrelation function is absolutely integrable, then D can 
be computed as the time integral over the velocity autocorrelation function 
(Einstein relation), 

JO .JO J 

where we used the stationarity of the velocity process. Note, however, that 
(4.3) and (4.10) do not imply each other in general. The identification of D o 
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with D requires that the second moment of qC(t) converges as E ~ 0 to the 
second moment of the limit (4.3). [In two dimensions (4.3) and (4.11) may 
of course not exist at all; cf. Ref. 5.] 

5. F ICK 'S  LAW 

To obtain Fick's law or even the macroscopic steady state profile and 
current in example (2) of Section 2, (4.3) turns out to be too weak an 
assumption. To strengthen it we note that if the system behaves as expected 
on physical grounds, i.e., in three dimensions has a strong decay of velocity 
correlations, then also the joint distribution of 

[ q ' ( t l ) -  qc(O),q'(t2)- qC(tl) ] 

should be independent and Gaussian as E-~ O, and similarly for any finite 
collection of such terms. Let b(t) be Brownian motion in three dimensions 
with covariance 2Dt. Then the convergence just described means that the 
finite-dimensional distributions of q'(t) converge to those of q + b(t). To 
be able to analyze our steady state experiment we will need to control the 
probability of events which depend on a continuum of times and not just 
on a finite number of them. (An event of this type is for example 
(t---rq(t)llq(t)l<<.R for 0 <  t <  1). Whether up to time one the test 
particle stays inside a ball of radius R cannot be decided on the basis of 
finitely many observations.) For convenience we adopt a convergence 
notion familiar from probability theory. 

Assumption B. Let b(t) be Brownian motion in three dimensions with 
covariance 2Dt. Then, with q(0) = c-lq,  

qC(t) ~ q + b(t) (5.1) 

as c ---) 0, in the sense of weak convergence of the path measures pc(. I q, P) 
o n  C(R). 

We now show that as a consequence of Assumption B the macroscopic 
current is related to the macroscopic density by Fick's law (2.5). 

Let S be a planar surface of finite area with a smooth boundary. Let n 
be a unit vector perpendicular to S. We denote b y j ( S ,  [t 1, t:]) the average, 
in the initial state defined by (4.5), number of black particles crossing the 
surface S in the direction n during the time interval [t~,t2] minus the 
average number of black particles crossing the surface S in the direction 
- n  during the same time interval This is the integrated current of black 
particles through S from t 1 to t 2. 

For mechanical motion the above definition makes sense. For Brown- 
Jan motion, however, the path wiggles a lot and the given definition of the 
integrated current is meaningless. One has to incorporate directly the 
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cancellations which occur when the path wiggles along S. One way to do 
this is to introduce a surface S '  such that S U S'  is a plane. A crossing 
through S in [q, t2] is counted (with the proper sign) if either there is only 
one such crossing in the interval or the crossings are separated by at least 
one crossing through S'.  With this convention we define on the path space 
C(R) the function F(S,[tl, t2] ) which assigns to the path t->q(t) the 
number of its crossings through S during the time interval [t~, t2]. F(S, [q, 
t2] ) takes integer values. It is defined almost surely with respect to the test 
particle process and with respect to Brownian motion. 

For a given configuration of colored particles one counts how often 
each one of the black particles crosses S during [q, t2]. If the particle for 
which the crossings are counted is regarded as the test particle, then one 
obtains the identity 

j(  S, [t,,t2]) = f dx,Oeq.,( x,)E( F( S, [ tl, t2 ]) I x,) (5.2) 

For short times 

+ a])=ffi,fde,n.e,p,(q,,e,,1,,; g) ~imo(I/8)j(S,[t , t  

-- fsd~,n.j(q,,t) (5.3) 

where d~q~ denotes the surface measure on S. Therefore 

j (S, [t,,t2] ) = ( t2dt(dq,n. j (q, , t )  (5.4) 
at] a s  

On a macroscopic scale we obtain then 

[ , -2 , , , , -2 ,2 ] )  = f '2a, ,_ 
�9 } t j  . i S  

t~ S 

= fdx, Ocq,,(x,)E'(F(S, [t,,t2])t x,) (5.5) 

Note that F(S,[tl,t2]) is independent of ~. By Assumption B q'(t)--> ql + 
b(t) as ~-->0. If this convergence holds also for the expectation of the 
unbounded function F(S,[q,t2] ), then the right-hand side of (5.5) con- 
verges to 

f dqog(qlE~ tz])[q)= -D(t2dt(dFtn. gradog(q,t) (5.6) 
at1 a s  

Here E ~ denotes expectation with respect to Brownian motion. Comparing 
with (5.5) we conclude that 

l im~- ~ ' (q ,  t) = - D grad pg(q, t) =j(q,  t) (5.7) 
e-3-0 
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The convergence here is in the sense of (5.5), namely, (5.7) holds when 
integrated over arbitrary time intervals [q, t2] and planar surfaces S. (5.7) 
shows that the properly scaled microscopic current of black particles tends 
in hydrodynamic limit to ( - D )  times the gradient of their macroscopic 
density. 

6. STEADY STATE 

We first show that imposing boundary conditions on the colors at the 
planes through qx = 0 and qx = L as in (2) of Section 2 leads to a steady 
state. We assume that initially all particles inside the slab, denoted by A, 
are black and argue that for t ~ oo the system of colored particles reaches a 
steady state. This is proved by a monotonicity argument. Let us introduce 
the following events for the test particle process q(t): 

A (0, t) = set of all continuous paths which within [0, t] exit 

A first to the right; 

A (1, t) = set of all continuous paths which within [0, t] 

either exit A first to the left or stay inside A; 

A (o, oo) _-- A (o). 

We adopt the convention that if the path starts already outside A, then this 
is considered as an exit. Let p , ( x l , a ] , . . . ,  x, ,a, ,  t; L) be the nth correla- 
tion function of the state of the system at time t. Then the average density 
of white particles at (q, p) at time t equals the average density of particles 
at (q, p) times the probability that given there is a particle at (q, p) at time t 
it is white. This is just the probability that going backwards in time for a 
time span t the test particle has exited A first to the right. Therefore, in 
general, 

p, (x], o ] , . . . ,  xo, on, t; L) = Poq, n (x~ . . . .  , x,) 

xlA(5,01q,,-e  . . . . .  e . , - e .  (6.1) 
J 

A(O,t) increases to AO)  and A(1,t) decreases to A(1) as t ~ c e .  
Therefore pl(x], 0, t; L) increases and Ol(X], 1, t; L) decreases to its limit as 
t ~ ~ .  For higher correlation functions one notices that they are express- 
ible as linear combinations of the probability of product of events depend- 
ing on a single color only. For example, 

P2(Xl, q, X2, O, t; L) = Peq,2(Xl, x2) 

• ( - P(A (1, t) • A (1, t) lq,, -Pl ,  q2, -P2)  

+P(A(1,  t) • C ( R ) [ q ] , - p ] , q 2 , - p 2 ) )  (6.2) 
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The events depending only on white increase and the events depending 
only on black decrease to their limit. Therefore every correlation function is 
a sum of either increasing or decreasing terms. As t---> ~ the correlation 
functions then tend to the stationary limit 

P n ( X l ,  O1 . . . . .  Xn ,  On; L )  = Peq, n ( X l ,  . . . , Xn)  

•  . . . . .  q , , - p , )  (6.3) 

These are the correlation functions of the steady state. 
Presumably, although there is no proof to our knowledge, the event 

that test particles never exit A has probability zero. If this is the case, as is 
true if test particles are assumed to diffuse, then the steady state (6.3) is 
unique among those states which when summed over colors reduce to the 
equilibrium state. 

The steady state correlation functions will be rather complicated. They 
contain, roughly on distances of the order of a mean free path, boundary 
layers and correlation between colors. A simplified description emerges on 
a macroscopic scale, i.e., on a spatial scale which is large compared to the 
mean free path. Therefore we let L---> oo as L, = c-1L and consider the 
scaled correlation functions 

p~(xl, Ol . . . . .  Xn,On; L) = pn(,--lql, Pl, O1, . . . , e-lqn, Pn,On; e- |L)  

-'~ P e q , n  ( s  - lql, pl . . . .  , c- lq, ,  p,) 

n 
• A ( o j ) [ q l , - P l , . . . , q n , - p n  ) (6.4) 

Notice that the event X j= 1A (oj) for the scaled test particle process does 
not depend on c. 

By Assumption B 

l imP(a(o )  l ql ' _p )  = eO(q + b(t) ~ A(o))  (6.5) 
c-->O 

the exit probability for Brownian motion. This is known explicitly and we 
therefore have 

lim lim e~(q, p,o,t;  L) = ph~(p) gAq, o ) (6.6) 
c --> O t---> oo 

where gs(q,o) = on~(q) + (1 - o)[1 - ns(q) ] and ns(q) is given (2.3). 
The average steady state current of black particles is given by Fick's 

law, Eq. (5.7), replacingj(q, t) and g(q, t) there byj f iq)  and n~(q). [To show 
this actually requires a small modification in the argument leading to (5.7) 
since the test particle now carries a color, o(t), which changes whenever the 
test particle crosses the surface of A according to the rules given above.] By 
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symmetryjs(q, L) = (j(L),  0, 0) and the scaled x component satisfies 

D (6.7) l ime-  ~ '(e- 'L) = -~ 9 
e - - - ) 0  

In particular, D~ = D satisfying the Einstein-Green-Kubo relation (4.11). 
The particular geometry of our steady state experiment was chosen for 

simplicity. One could imagine regions of more complicated shape and 
stochastic boundary conditions for the colors. The result will always be the 
same. On a macroscopic scale the steady state is given by the stationary 
solution of the diffusion equation with the appropriate boundary condi- 
tions. The steady state current is related to the steady state density by 
Fick's law. 

7. FLUCTUATIONS AND LOCAL EQUILIBRIUM 

Thus far we discussed the average color profile on a macroscopic scale. 
As a more detailed description we consider now the color random field. 

Let n ' (h ,  o, t) be the number of particles of color o in the spatial region 
e - l A =  { q ~ R 3 ] e q ~ )  at time c-:t. n '(A,o, t)  is a random variable. 
From Assumption B we conclude that for its average 

lim ( e3n'(A, o, t) ) = ( d q  pg(q, o, t) (7.1) 
c - - - ~ 0  ~ " " /  JA 

in the time-dependent state with initial conditions given by (4.5) and 

(e3n'(a, o,,)) = f / q  ogs(q, (7.2  

in the steady state given by (6.3). 
To obtain information on the variance and higher-order correlations 

we have to go even beyond Assumption B and consider the path measure 
of several test particles scaled as in (4.2). This is denoted by P ' ( .  [q], 
Pl, �9 �9 �9 q,, P,) and its expectation by E ' ( .  I ql, Pl . . . . .  q,, p,). We assume 
that several test particles move asymptotically independently even when 
started at nearby distances: 

Assumption C. Let bj(t), j = 1 . . . . .  n, be n independent Brownian 
motions in R 3 with covariance 2Dt. Let ~'(0) = q + cqj. Then for n = 1, 
2 ,  . . . ~ 

(q~(t) . . . . .  q~(t)) ---) (q + b](t ) . . . . .  q + b,(t)) (7.3) 

independently of ql . . . . .  q, as e-~,0, in the sense of weak convergence of 
the path measures P ' ( .  I q + eql, Pl, �9 �9 �9 q + eq,, p,) on C(R, R 3,). 

It follows from the clustering of the equilibrium correlation functions 
that, as e ~ 0, 

e - 1  p,, q2, p2) ~ phB(p,)ph/~(p2) (7.4) 
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except at points of spatial coincidence. If we invoke Assumption C in the 
case of two test particles starting at e-lql ,  and e-~qz, then 

2 

lim 0~(Xl, ol, x2, 02, t) = IX he (Pj)Pg(qj, oj, t) (7.5) 
r j = l  

for ql ~ q2. This factorization means that the fluctuations tend to zero as 
E ~ 0, i.e., 

lira c3n '(A, o, t) = fadq og(q, o, t) (7.6) 
c-->0 

in probability. By the same argument (7.6) holds also for the steady state 
[with g(q, o, t) replaced by g(q, o)]. It follows then that the higher correla- 
tion functions also have to factorize almost surely. Therefore, if two test 
particles starting at macroscopically distinct points asymptotically move 
independently, then the color profile becomes deterministic in the hydrody- 
namic limit. If this property fails, then there are correlations of colors on a 
macroscopic scale. 

To obtain information about the distribution of the color random field 
one has to consider 

c3/2[ n '(A, o, t) - ( n '(A, o, t) ) ] (7.7) 

which describes the deviations of the color field from its average. It is 
expected that the distribution of (7.7) tends to a Gaussian as c---> 0. We do 
not see how the covariance of the limiting fluctuation field could be 
deduced from the Assumptions made so far. 

A different direction of refinement is to study the local (on the 
macroscopic scale) distribution of colors. One considers then the number of 
particles, n'(q,t; A,o), of color o in the region e - lq  + A at time e-2t. Note 
that the reference point q is kept fixed on the macroscopic scale and that 
the region A is independent of ~. The collection of random variables 
{n'(q, t; A, o) lk bounded} define the local state at q at time t. Its limit as 
c ~ 0  is most easily investigated through the moments of n~(q, t; A, o), i.e., 
through correlation functions. To be specific let us discuss the steady state. 
The time-dependent states follow the same pattern. 

The correlation functions of the local state at q are defined by 

O~,(xx, a l , . . . ,  x , ,o , ;q)  

= P,(c-lq + ql, Pl,~ . . . . .  c- lq  + q, ,P, ,~  E-1L) 

= Peq, n (q l ,  131 . . . . .  qn, f in) 

• P '  (oj) I q + cql, - P l  . . . . .  q + Eqn, --fin (7.8) 
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We used here the translation invariance of the equilibrium state. Making 
Assumption C, then yields 

l imp ,~ (x l ,% , . . . ,  x,,an; q) = Oeq,n(Xl . . . . .  X,) I I  gs(q'aj) (7.9) 
~--->0 j = 1 

Therefore, locally at q, one sees an infinite system of particles which have 
independently of each other color o with probability &(q, a). The system of 
colored particles is locally in equilibrium with the parameters p, fl, gs(q, o). 
(Presumably, the state with independent coloring is the only time-invariant 
state with the property that the particles, disregarding their color, are in 
equilibrium.) 

8. CONCLUDING REMARKS 

(i) It is very difficult to prove or disprove the validity of the succes- 
sively stronger Assumptions A, B, C for any real system. We do not even 
know at the present time whether there are any physical systems for which 
A but not B is satisfied. It is, however, easy to construct mathematical 
examples where this is true. In the physics literature only A is generally 
considered explicitly but in fact B is implicitly assumed to hold. 

We briefly describe two of the better understood models (cf. also Ref. 
3 for the dilute gas case for which the appropriately modified Assumptions 
A, B, and C hold). 

(a) Assumption B is true for hard rods in one dimension with a 
general velocity distribution. (11) Since in this model particles cannot pass 
each other Assumption C cannot hold. In fact, 

[q~(t),q~(t)]--)Iq 1 + b(t),q2 + b( t ) ]  

as c ~ 0 .  ~12) To have a model which is less trivial as regards B we 
investigate in Ref. 4 a system of hard rods, where the rods have some 
probability to pass through each other. C still does not hold. 

(b) A higher-dimensional system for which Assumptions A and B are 
proved to be valid is the periodic Lorentz gas. (13) This is a system of 
independent particles in two dimensions which move with speed one 
through a periodic configuration of strictly convex, specularly reflecting 
scatterers. It is assumed that the distance between two successive collisions 
is uniformly bounded. A test particle is now simply a single particle moving 
through the scatterers. If the initial conditions of the test particle are fixed, 
then there is only a single path and convergence to Brownian motion is not 
possible. Bunimovich and Sinai prove that, if the initial distribution of the 
test particle is given by a once differentiable density, then the test particle 
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process converges weakly to Brownian motion. For the Lorentz gas As- 
sumption C is trivially satisfied, since particles are independent. 

(ii) Consider the first example in Section 2. In the initial state we have, 
using (4.5), 

ol(ql,  p l ,o l ,  t = O) = ha(pl)on(q1,ol ,  t = O) 

PE(ql, Pl, ol, q2, Pz, ~ t = O) = h a (pl)hp (p2)o2g(lql - qzl) (8.1) 

• h (ql, ~ t = 0)n (q2, 02, t = 0) . . . .  

where g(r) is the equilibrium radial distribution function of the fluid and 
n (q ,o , t  = 0) = (1 - o)O(qx) + o[1 - 0(qx) ] with O(qx) the Heaviside step 
function. The time evolution of these correlation functions, o~(ql, p l ,Ot ,  
. . . .  ql, pl, ot, t), l =  1,2 . . . . .  will be governed by the solution of the 

infinite BBGKY hierarchy. (5) The black color flux at position q at any time 
t is given by 

j ( q ,  t) = f dp PPi(q, P, 1, t) (8.2) 

In particular, j ( q , O ) -  O, and for a fixed (microscopic) time t > 0 the 
correlations and current will be some complicated functions of t. 

A simpler picture emerges on the macroscopic scale. When our as- 
sumptions hold, then 

~imon(ql, pl ,  ol, e-2t) = ~,(ql,  pl,  ox, t)== ha(pl)on(O, ol, t) (8.3) 

lira/~2(ql, Pl, ~ q2, P2, 02' t) 
r 

=-- ha (POha (P2)p2g(I ql - qz[) n (0, ol, t)n (0, o z, t), etc. 

• l ime-  ~/(q,~-2t) = j ( q , t )  -- - D p g r a d n ( O ,  1,t) (8.4) 
E---~0 

Here n(q, o, t) is the solution of the diffusion equation with initial condition 
n (q ,o , t  = 0) and n(O,o , t )=  1/2. In particular, j ( q , t )  does not vanish as 
t-->0. [Because of the singularity in gradn(q ,o , t  = 0) at q = O j ( q , t )  be- 
comes actually infinite as t ~ 0.] The scaled current is therefore not given as 
an expectation value of a microscopic current in the local equilibrium state. 
This is of course natural s inee j~Ej  and we have taken e ~ 0 .  

In order to get f as an expectation we have to obtain the correlation 
functions to the next order in an expansion in c, i.e., 

o,(ql,  P,,01, �9 �9 �9 qt, P,,at, ' -2 t )  = Pt(ql, P1,01 . . . . .  qt, Pt,~ t) 

+ Et)(l 1)(ql, Pl, 0t . . . . .  qt, P~, 0l, t) + " " �9 

(8.5) 
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and then average the microscopic current, 

j (q , t )  = lap polO(q, p, 1,t) (8.6) 

The equality of the right-hand sides of (8.4) and (8.6) is guaranteed by our 
derivation of Fick's law. 

The situation here is entirely analogous to that encountered in the 
well-known normal, Hilbert, or Chapman-Enskog solutions of the (linear) 
Boltzmann equation. O) In that case one deals solely with the one-particle 
distribution function, while here one deals with the whole state, containing 
correlations of all orders. In both cases, however, it is the hydrodynamic 
equations for the conserved quantities which describe the evolution of the 
system on the slowest time scale that determine the structure of the system 
on the macroscopic scale. 

(iii) The types of initial states described by Eq. (4.5) in which the color 
depends solely on the particles position can be generalized in an obvious 
way by having g depend also on v. Assumptions A to C have then to be 
generalized to include convergence to Brownian motion of the test particles 
started with any initial velocity. Just how general initial conditions we can 
allow and still expect the diffusion equation to hold for the color profile is 
an open question. 

(iv) It is possible to consider more general color processes than those 
discussed in this paper, e.g., we can make color a continuous variable which 
is conserved but gets redistributed according to some rule when two 
particles collide. The color profile would then satisfy more general types of 
linear equations--we shall consider some of these in a later publication. 
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